

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : EMI(16EC416)

Course & Branch: B.Tech – ECE

Year & Sem: III B.Tech & I Sem

Regulation: R16

<u>UNIT –I</u>

1.a) Explain about static characteristics of measuring instrument.	[CO1][L2][5M]			
b) Define any two statistical analysis of measuring instrument.	[CO1][L1][5M]			
2. a) Explain the construction of multi-range voltmeter& Range extension DC voltmeter	er. [CO1][L2][5M]			
b) A D'Arsonval movement with a full scale deflection current of 50 μ A and interna	l resistance of			
500Ω is to be converted into a multirange voltmeter .define the value of multiplier	required for			
0-20v, 0-50v,0-100v,	[CO1][L5][5M]			
3. a) Explain different types of errors that occur in measurements.	[CO1][L2][5M]			
b) Explain about Differential type voltmeter.	[CO1][L2][5M]			
4. a) How do we determine the performance characteristics(static & dynamic) of an instrument.				
	[CO1][L1][8M]			
b) Explain the process of calibration.	[CO1][L1][2M]			
5. a) Define sensitivity. Calculate the sensitivity of a 200 µA meter movement which is to be used as a dc				
voltmeter.	[CO1][L1][2M]			
b) Draw and explain solid state DC Voltmeter.	[CO1][L2][8M]			
6. a) Explain the dynamic response of Zero order, first order, second order instrument.	[CO1][L2][7M]			
b) Explain multirange AC voltmeter.	[CO1][L2][3M]			
7. a) With neat sketch explain thermocouple type RF ammeter.	[CO1][L2][7M]			
b) Discuss about basic DC Ammeters.	[CO1][L2][3M]			
8. a) Describe with the help of circuit diagram the construction and working of a shunt-type ohm meter				
	[CO1][L2][7M]			
b) Explain the fundamental principle on which DC meter is constructed.	[CO1][L2][3M]			
9. a)Explain how a multi-meter can be used as i) DC voltmeter & AC volt meter	[CO1][L2][7M]			
b) Explain how a multi-meter can be used as Ohmmeter	[CO1][L2][3M]			
10. a) Explain with the help of circuit diagram the construction & working of a series type ohm meter.				
	[CO1][L2][7M]			
b) Explain about basic DC Ammeter.	[CO1][L2][3M]			

Electronic Measurements and Instrumentation

<u>UNIT –II</u>

1. a)Draw the neat diagrams of vertical deflection systems and explain briefly about the	ir working.	
[CO2][L2][7M]		
b) Discuss briefly about Horizontal amplifier	[CO2][L2][3M]	
2. a) Discuss about important CRT features.	[CO2][L1][3M]	
b) Draw the block diagram of a dual beam oscilloscope & explain its working.	[CO2][L2][7M]	
3. a)Draw the block diagram of a general purpose oscilloscope(CRO) and explain function of each block		
in detail.	[CO2][L2][8M]	
b) List the applications of CRO	[CO2][L1][2M]	
4. a) Explain the major parts of CRT with a block diagram.	[CO2][L2][7M]	
b) Compare dual trace oscilloscopes and dual beam CRO.	[CO2][L4][3M]	
5. a) Draw the block diagram of Delay line circuit and explain its working.	[CO2][L2][7M]	
b) State the standard specifications of a sample CRO.	[CO2][L4][3M]	
6. a) Discuss in detail, the construction and working of a digital sampling oscilloscope.	[CO2][L2][5M]	
b) Explain in details the construction and working of Time base generator	[CO2][L2][5M]	
7. a) Describe in details the construction and working of an analog type storage oscilloscope.		
	[CO2][L2][5M]	
b) Explain with the block diagram how the digital frequency can be measured using c	ounter/meter	
instrument.	[CO2][L2][5M]	
8. a) Describe in details the construction and working of an digital storage oscilloscope	[CO2][L2][5M]	
b) Explain the function of trigger circuit.	[CO2][L2][5M]	
9. a) Explain with a diagram how frequency & phase can be measured using a Lissajous	s method.	
	[CO2][L1][5M]	
b) Briefly discuss about digital storage oscilloscope.	[CO2][L1][5M]	
10. a) Explain with the block diagram how the digital frequency and time period can be	measured using	
Counter/meter instrument.	[CO2][L1][6M]	
b) List and explain any two different types of CRO probes?	[CO2][L1][4M]	

<u>UNIT –III</u>

1. a) With the help of block diagram explain the functioning of a conventional standard signal generator.		
	[CO3][L2][7M]	
b) Describe about fixed AF oscillator and variable AF oscillator.	[CO3][L2][3M]	
2. a) Draw the block diagram of a function generator and explain its operation.	[CO3][L2][7M]	
b) List the applications of random noise generator.	[CO3][L2][3M]	
3. a)With a neat diagram discuss the operation of a pulse generator.	[CO3][L2][6M]	
b) Explain the working of arbitrary waveform generator	[CO3][L2][4M]	
4. a).Discuss in detail about RF signal generator operation.	[CO3][L2][5M]	
b) Explain the method of generating of random noise with neat sketch	[CO3][L2][5M]	
5. a) Explain the working of a standard sweep generator with diagram.	[CO3][L2][7M]	
b) Define sweep generator	[CO3][L1][3M]	
5. a) With help of a neat sketch, explain the working of a frequency selective wave analyser.		
	[CO3][L2][7M]	
b) Define the function of wave analyser?	[CO3][L1][3M]	
7. a) Describe with diagram the operation of a Logic analyser.	[CO3][L2][7M]	
b) List the application of wave analysers. [CO3]		
8. a) Draw the circuit diagram and explain the working of a heterodyne type wave analyser.		
	[CO3][L2][7M]	
b) What is distortion? What does a distortion analyser measure	[CO3][L1][3M]	
9. a) Define the function of harmonic distortion analyser.	[CO3][L1][3M]	
b) Describe the diagram with operation of a harmonic distortion analyser using Wein bridge and		
frequency selective type.	[CO3][L2][7M]	
10.a) With a neat sketch explain the operation of Spectrum analyser.	[CO3][L2][5M]	
b) Explain how wave analyser can be tuned to a particular frequency within the audible frequency		
range.	[CO3][L2][5M]	

<u>UNIT –IV</u>

impedance.

1. a) Discuss the working principle of Q-meter &its applications.	[CO4][L2][6M]		
b) Write short note on interference & explain noise reduction techniques.	[CO4][L2][4M]		
2. a)Explain any Two ac bridges to measure unknown inductance.	[CO4][L2][8M]		
b)Distinguish between AC Bridges and DC bridges	[CO4][L2][2M]		
3. a) Describe in detail about EMI &EMC with suitable examples.	[CO4][L2][4M]		
b) Explain the working principle & operation of Capacitance & Inductance bridge circuit	it [CO4][L2][6M]		
4. a) Explain the operation of Kelvin Bridge.	[CO4][L2][4M]		
b) Derive the expression for unknown resistance of kelvin bridge	[CO4][L2][6M]		
5. a)Discuss briefly about bridges?	[CO4][L2][3M]		
b) Draw the Anderson's bridge circuit and derive necessary equations& explain it. [Co	D4][L2][7M]		
6. a) Explain the Schering bridge circuit	[CO4][L2][8M]		
b) List the applications of schering bridge circuit	[CO4][L1][2M]		
7. a) Explain how a Maxwell bridge can be used for measuring an unknown inductance.	[CO4][L2][6M]		
b) What is interference & explain noise reduction techniques.	[CO4][L2][4M]		
8. a)Describe the operation of the Wheatstone bridge	[CO4][L2][5M]		
b) Derive the expression for current when the bridge is balanced.			
	[CO4][L2][10M]		
9. a) Explain how a Maxwell bridge can be used for measuring an unknown inductance.	[CO4][L2][5M]		
b) A Maxwell bridge is used to measure an inductive impedance the bridge constants at balance are			
C1=0.01 μ F, R1=470K Ω , R2=5.1 K Ω and R3=100 K Ω . Find the series equivalent of the unknown			

[CO4][L5][5M]

10.a) What are the applications of Wheatstone bridge. And list out its limitations. [CO4][L2][4M]b) Describe the operation of the Wheatstone bridge and derive the expression for DC resistance.

[CO4][L2][6M]

<u>UNIT –V</u>

1. a) With a neat sketch explain the operation of LVDT.	[CO5][L2][8M]
b) What are the advantages & disadvantages of LVDT	[CO5][L2][2M]
2. a)Explain strain gauge for resistance measurement	[CO5][L2][8M]
b) List the applications of LVDT	[CO5][L2][2M]
3. a)Describe the operation of i) resistive transducers	[CO5][L2][5M]
b) Describe the operation of capacitive transducers.	[CO5][L2][5M]
4. a) Distinguish between the active & passive transducers.	[CO5][L2][3M]
b) Explain the operation of potentiometric transducer.	[CO5][L2][7M]
5. a) Define a transducer. List the applications.	[CO5][L1][3M]
b) Explain about Inductive transducers.	[CO5][L2][7M]
6. a) Draw the diagram of Resistance Thermometer & explain briefly.	[CO5][L2][7M]
b) What are the functions of transducers?	[CO5][L1][3M]
7. a) Write short notes on i) LVDT ii) thermocouple	[CO5][L2][6M]
b) Discuss about signal conditioning circuits.	[CO5][L2][4M]
8. a) With a neat sketch, explain the operation of piezo-electric transducers in detail.	[CO5][L2][7M]
b) Explain how an electrical transducer can be used to find the unknown pressure of a l	iquid.
	[CO5][L2][3M]
9. a) List the three types of temperature transducers & describe the application of each.	[CO5][L2][5M]
b) Explain about pH measurement.	[CO5][L2][5M]
10.a) Define piezoelectric effect. Write the applications of piezoelectric transducer.	[CO5][L2][5M]
b) Write about IC sensors & smart sensors.	[CO5][L2][5M]

Prepared by: A.RAJASEKHAR YADAV & CH.SILPA

 QUESTION BANK	2019

Electronic Measurements and Instrumentation